
EE / CprE / SE 492 – sddec20-05
An Advanced Networking Outreach Activity for Kids

Bi-Weekly Report #1
08/17/2020 – 08/28/2020
Client & Faculty Advisor: Dr. Tom Daniels

Team Members
Grayson Cox | UI Developer | Agile Project Manager
Austin Dvorak | Network Systems Manager
Ryan Newell | Hardware Systems Admin
Spencer Parry | UI Developer
Ross Thedens | Communication Systems Manager | Meeting Secretary

Reporting Period Summary
This was our first reporting period for the semester, so we spent some time planning meetings
and discussing our communication strategy to deal with restrictions caused by the pandemic.
We have decided that meeting remotely would work best because some of us are working
already and commuting to campus would be too inconvenient. We anticipate having in-person
meetings on select occasions such as the weeks in which we have to submit iterations of our
design document.

Reporting Period Accomplishments
● Got mesh network set up and all nodes connected

○ Switched over to generic raspbian image while still using batman-adv for packet
handling

○ Optimized configuration to fit onto a single, 20 line bash file
● Got low-latency WebRTC demo stream working using Raspberry Pi Camera, Janus

WebRTC Server, and FFmpeg
○ Installation process and setup for Janus

■ Several packages needed to be build from source due to version
requirements

■ Learned what configuration files need to be edited to create a video
stream

○ FFmpeg found to be superior to VLC and GStreamer for H.264 streaming from
the Pi

■ Tests were done using the Janus WebRTC streaming video, streaming
video from the camera module on the Pi to a web browser (over localhost,
LAN, and WLAN interfaces)

■ VLC and GStreamer caused the stream to freeze
● Stream appeared okay for ~1 second, then only a few frames over

the next ~5 seconds, then a complete freeze
● Tried reducing framerate and resolution, down to 1fps and smaller

than 100x100
● Explored possibility of different browsers performing differently

(Chrome vs. Firefox)
● Tried adjusting various network buffers without success

■ FFmpeg worked reliably, with a consistently high framerate
■ All options were tested without using the closed-source UV4L utility often

mentioned in WebRTC tutorials for Raspberry Pi
● We are on track to complete the project without having to involve

any closed-source/proprietary software
○ Experimented with and studied Janus WebRTC API.

■ Found appropriate JavaScript library for video streaming client. Still in the
process of adapting it to work in an Angular application.

Pending Issues
● Decide how network configurations will be handled
● No easy way to install dependencies for Janus/WebRTC streaming on Pis yet

○ Planning to solve this problem with Docker

Individual Contributions
Team Member Contribution Reporting

Period
Hours

Total
Hours

Grayson Cox ● Coordinate schedules to choose meeting
times.

● Plan out repository structure for user
application.

● Studied JanusGateway API.
● Work on video streaming portion of user

application.

12 12

Austin Dvorak ● Got mesh network setup and working 12 12

● Created bash file with required commands

Ryan Newell ● Organized meeting schedule with team
● Researched methods for easy

configuration of devices
● Experimented with methods for easy

imaging

12 12

Spencer Parry ● Worked with team to coordinate schedules
● Researched UI enhancements that could

be to our benefit

12 12

Ross Thedens ● Tracked down and installed Janus
dependencies

● Tested/Evaluated VLC, GStreamer, and
FFmpeg with Raspberry Pi & camera

12 12

Plans for Next Period
● Have working prototype of video streaming portion of user application.

○ Be able to display a video stream from the Janus server using the Janus
Gateway API for client video streaming.

● Add configuration support to network bash configuration file
● Start work on visualization of network through batman-adv/alfred
● Prepare Docker container for easy installation of Janus and related dependencies on all

nodes
● Develop camera messaging (turn on/off stream, support stream multiplexing) via

ZeroMQ
● Begin developing interface for UI to access network statistics

○ Determine what API is available and what interfaces will have to be implemented
to make statistics easily accessible to UI

○ Further develop ZeroMQ messaging system to access data from mesh nodes
● Research and procure temperature sensors
● Research viable battery configuration that fits requirements

