
EE / CprE / SE 491 – sddec20-05
An Advanced Networking Outreach Activity for Kids

Bi-Weekly Report #5
3/16/2020 – 4/12/2020 (includes Spring Break)
Client & Faculty Advisor: Dr. Tom Daniels

Team Members
Grayson Cox | UI Developer | Agile Project Manager
Austin Dvorak | Network Systems Manager
Ryan Newell | Hardware Systems Admin
Spencer Parry | UI Developer
Ross Thedens | Communication Systems Manager | Meeting Secretary

Reporting Period Summary
This was our first reporting period during the virtual instruction period. Grayson, Austin,

Ryan, and Spencer are in Ames, while Ross is about two hours away. We received all of our
hardware except for the camera module. We have begun setting up the ad-hoc networking
configuration in OpenWrt, but we have run into some roadblocks that may prevent us from using
the distribution. Besides this, we have been working out the details of video streaming from the
network to the backend/frontend and basic control/data flow between the network master node
and the relay nodes. As part of our design document, we established a set of concrete goals for
the project and a timeline to accomplish them on. As we proceed towards the end of 491, we
will continue working on setting up our ad-hoc network, establishing a communication
architecture, and making revisions to the design document until our remaining path towards
implementing the project is well-defined.

Reporting Period Accomplishments
● A more concrete design plan for the Network Master Node (All)

○ We’ve decided there will be three software components on the network master
node:

■ Socket Program (Ross & Ryan)
● Handles direct connections with network nodes.
● Transmits data to backend/Spring application.
● Supports connecting and disconnecting nodes in the network.

○ This will be done with the hardware alone, independent of
the user application.

■ Backend/Spring Application (Grayson)
● Receives data from socket application.
● Stores relevant data to be queried by User Application.

○ Examples:
■ Current nodes in network
■ Connection statistics for each node
■ Sensory data streams for each sensor node

● Provides HTTP API for User Application.
● Provides means of controlling the network through HTTP.
● Possibly supports web socket connections with the User

Application.
■ User Application (Web App) (Spencer & Grayson)

● Sends HTTP requests to backend and shows responses in GUI.
● Provides GUI for users to control the network.
● Capable of visualizing live data streams.

● Kafka/WebSocket prototyping (Ross)
○ Researched Apache Kafka

■ Kafka can be used to create a publisher-subscriber communication model
with ease

■ Topics can be created; producers can post messages to topics;
consumers can read messages from specific topics

■ This will be useful for issuing commands from the network master node to
the relay nodes

■ It is flexible enough to allow us to send data from the relay nodes to the
network master node as well

○ Experimented with Kafka
■ Created a simple application to send data between a Spring Boot

application and a Python program using Kafka
● Spring Boot has built-in Kafka support
● Python has several Kafka implementations; settled on the

open-source kafka-python
○ Prototyped with Kafka

■ Wrote some code to simulate three relay nodes and a network master
node

■ Network master requests data from relay nodes using one topic; relay
nodes send messages back on a different topic

● This will be integrated into the socket program that transfers video
streams.

○ Experimented with WebSockets
■ Thought this might be a simple (high-level) way to transfer video data

from python program to Spring Boot on network master node

■ If we use the VLC web plugin, this will not be necessary (VLC can receive
a UDP video stream directly)

● Design Document V2 (All)
○ Prior Literature section (Ross)

■ Researched several previous academic experiments with ad-hoc
networking

○ Initial Project Timeline (Ross)
■ Created a Gantt chart representation of our project timeline; decided on a

preliminary ordering/scheduling of tasks
○ Task Decomposition (All)

■ Resulted in planning changes delineated in the first main bullet point
● Contingency Plan (All)

○ Defined a contingency plan as a team
■ Weekly Zoom meetings set up by Dr. Daniels allow us to meet virtually

(even if Dr. Daniels is not present)
■ Prioritizing hardware access for Austin, who is leading the mesh

networking configuration

Pending Issues
● Determine video/sensor feasibility in routing distributions considering incompatibility of

Raspberry Pi camera module (Ross & Ryan)
○ Our BOM includes the V2 Raspberry Pi camera module. We will need to test this

in OpenWrt (assuming we stick with OpenWrt) to make sure it is supported and
assess what needs to be done to make it work

● Choosing library for showing video streams in user application (Grayson & Spencer)
○ Options:

■ VLC
● It’s open source, so there would be no licensing issues.

■ WebRTC
● Supports only peer connections, so this may be too specialized for

what we need.
■ Writing our own

● This could be too time-consuming.
● Risky, since video streaming is a very specialized concept. We

might not even be able to do it.
● Set up a mesh network in OpenWRT (Austin)

○ May need to consider changing linux distributions/mesh network protocols to
better suit our application

○ Get configuring mesh networks

Individual Contributions
Team Member Contribution Reporting

Period
Hours

Total
Hours

Grayson Cox Experimented with Spring Boot and Angular to test
means of connecting the backend to the user
application. Started experimenting with VLC and
WebRTC to create a basic video streaming
application consisting of a Spring Boot server and
Angular client.

20 68

Austin Dvorak Started working on the mesh network configuration
testing.

30 78

Ryan Newell Picked up hardware from ETG and started
experimenting with OpenWRT. Experimented with
configuring mesh networks on a Raspberry Pi.

18 66

Spencer Parry Started experimenting with streaming UDP
streams into a VLC plugin on HTML.

22 70

Ross Thedens Experimented with Kafka to simulate control data
flowing between relay nodes and network master
node. Experimented with WebSockets for data
transfer between python/Spring Boot applications
on network master node. Contributed research and
initial schedule to design document.

24 72

Plans for Next Period
● Decide on library for showing video streams in Angular (Grayson & Spencer)

○ Find ways to encapsulate the use of the chosen library to support modular design
in the project.

○ Find out how the chosen library will affect the design of the backend/Spring
application in terms of video format.

○ Make demo applications using the library to learn more about how it works.
■ Maybe include unit tests for the library.

● Continue testing the mesh network to find a feasible solution that can be implemented
(Austin)

● Camera Testing (Ryan & Ross)
○ Once camera module is received, we need to begin testing it in OpenWrt, or

another distro if we have to switch
○ Figure out if we can install the raspicam package in the distribution we are using,

or if there is another way to make this work
● Consider use of status LED for indicating network connections (Ryan & Ross)

○ LED would turn on if connected to a network master node
○ Need to assess how this would fit with the Raspberry Pi case we have currently

● Get input from Dr. Daniels on whether Kafka is a good fit (better than ZeroMQ) (Ross)
○ Dr. Daniels used ZeroMQ successfully on a previous Pi project
○ However, we are planning to use Spring Boot, which has no existing ZeroMQ

integration
● Update Design Document (All)

○ Ensure that diagrams, schedule, details are up to date with latest team decisions
and planning before submitting V3

○ Write Testing & Implementation section (section 5)

