
An Advanced Networking
Outreach Activity for Kids
Client/Advisor:

Team:
Dr. Tom Daniels
Grayson Cox, Austin Dvorak,
Malcolm Johnson, Ryan Newell,
Spencer Parry, Ross Thedens

Problem/Project Statement
● Wireless networks are now commonplace
● K12 students use wifi regularly

○ Aren’t taught mechanics behind it
○ Opportunity to raise interest in

computing fields
● How to teach children about wireless

technology?
○ Connect intangible signals to

observable phenomena
○ Visually demonstrate functions with

GUI

● Portable wireless network nodes
○ Relay nodes
○ Camera nodes
○ Network master node

● User application
○ Show network statistics and

sensor data
○ Network configuration

Functional Requirements
● Nodes form a wireless network

○ No setup required
○ Nodes can connect, disconnect, and reconnect without user input
○ No internet connection required

● GUI Web Application
○ Connect to Network Master Node from instructor computer
○ Display list of connected nodes
○ Stream video and sensor data from nodes

Non-Functional Requirements
● Low latency network stream (<2 seconds)
● Durable nodes, enough to handle low (<5 feet) drops
● Interference tolerance without severely affecting performance of the network
● Robust and simple enough to use
● Appropriate for grade students and their instructors
● 30 foot line-of-sight connection range
● >2 hours of battery life on full charge and not require disassembly to charge

Literature Survey
● Sharma and Nekovee

○ OpenFlow, virtual nodes
○ GUI controller with video

● Biagioni (University of Hawaii)
○ Raspberry Pi 0W with onboard WiFi
○ AllNet protocol, simple data transfer

Resource Requirements
● Total cost around $960 (6 nodes)
● Should be used in an environment that will cause signal loss (such as a

building with multiple rooms or a large field)
● A laptop to connect to the Master Network Node

Risk Analysis & Mitigation
● Moving to virtual instruction and meetings

○ Meetings were more difficult when you cannot meet in person
○ Using tools such as Zoom and Google Drive helped mitigate this risk

● Performance limitations of Raspberry Pi
○ Using H.264 codec helped with the performance issues

● Compatibility issues with various browsers
○ WebRTC is well supported and provided low latency
○ Janus Web Server used due to minimal issues with Firefox

System Analysis

● Network Master Node
○ Hosts User Application
○ Controls Mesh Network

● Relay Mesh Node
○ Forwards packets among the network

● Video Mesh Node
○ Captures live video with Pi camera
○ Serves video using WebRTC

Hardware Design
● Node Base

○ Raspberry Pi 4 Model B
○ UPS Raspberry Pi Hat w/ Batteries
○ Case

● Video Node
○ Includes a camera and camera mount

● Case
○ Customizable to fit the Raspberry Pi and

UPS in same case
○ Camera mount is easily attached

● UPS Hat
○ Allows nodes to operate wirelessly
○ Batteries can be charged without taking

them out of the nodes

Hardware Testing
● Battery Lifespan

○ Power lasted 3+ hours
○ More than enough power for our requirements

● Durability of case & node
○ Unable to test because of timing conflicts
○ Replace with enclosed case that fits the UPS shield in the future

● System Startup
○ Checks that each node boots up and can connect to the mesh network
○ Each node has been confirmed to be working as intended

Mesh Network Design
● Built on BATMAN-adv
● Wrote startup script to pull information from a configuration file

● Allows the UI to call a Flask api that modifies the configuration file
● Can change network name, ip address node name and type

● Wireless Access point that a user’s computer can connect to
○ HOSTAPD

Mesh Network Testing
● Basic Pings to verify functionality

● Future Plans
○ More rigorous testing
○ Check bandwidth, speed, interference, latency.
○ Connect Mesh interface to Wireless AP to allow for camera

streaming

Network Demo

https://docs.google.com/file/d/1XsWjxNPlgqLWeJGZj40TzmIbkE3yI33I/preview

User Application
● Web-based application
● Visualizes live and static data from network

○ Network topology
○ Network statistics
○ Video streams

● Technologies used:
○ Angular
○ Docker
○ WebRTC

https://docs.google.com/file/d/1I4vQFraM7aRAfuTRDhU7ybTJQ3sIIQwn/preview

User Application Testing
● Test Plans

○ User Application can receive data from the Backend Application
○ Docker must build both the User Application and the Backend Application with one command

● Test Results
○ User Application received both mocked and real data from the Backend Application
○ Using Docker Compose, we were able to build the User and Backend Application with one

command

● Conclusions
○ Keep in mind the performance constraints of a Raspberry Pi
○ More dependencies mean more time building and take up more space

Backend Application
● Simple REST service for accessing and

controlling the Mesh Network
● Hosted on the Network Master Node
● Functions implemented:

○ Get all nodes in network
○ Get static node properties by IP address
○ Update a node’s properties

● Technologies used:
○ Spring Boot
○ Nmap
○ Docker

Backend Application Test Results
● Serving data to User Application

○ Total success
● Sending requests to Node REST API

○ Successful but sometimes unreliable
○ Hindered by issues connecting to Node REST API

● Discovering nodes in the Mesh Network
○ Successful but very slow because of Nmap
○ Sometimes unable to fetch node data because of issues with Node REST API

● Unit Tests
○ 100% code coverage (excluding model classes)
○ 100% test acceptance

Backend Application Retrospective
● Takeaways

○ Nmap wasn’t the best idea.
○ Exposure to Docker and docker-compose
○ Experience working with engineers of different disciplines

● Suggestions for future groups
○ Use something other than Nmap to perform network scans.

Video Streaming Design
● Stream Pi camera feed to browser page
● Two Components

○ FFmpeg
■ H.264 video encoding
■ RTP forwarding

○ Janus WebRTC server
■ Stream to Browser
■ JavaScript API

● Deployed with Docker

Video Streaming Test Results
● Test video to browser page

○ Successful test
○ Set bitrate, resolution, framerate

● Test video through mesh network
○ Unsuccessful test
○ WebRTC communication interrupted
○ Possible network bridge issue

Network
bitrate

Video
bitrate

Video
framerate

Video
resolution

200-2500
kbps

~500
kbps

15 FPS 480x320

Video Streaming Retrospective
● Lessons

○ Start integration early
○ Ask critical questions

● Future Work
○ Fix bridge issue

https://docs.google.com/file/d/1jPiR-JuMoYtSbAsKv1eir1N1lKxgHbzu/preview

Thank you

References (from Literature Survey)
● E. Biagioni, “A Network Testbed for Ad-Hoc Communications using Raspberry Pi and 802.11,” in

Proc. of the 52nd Hawaii International Conference on System Sciences. Accessed on: Mar. 29,
2020. [Online]. Available: http://hdl.handle.net/10125/60191

● S. Sharma and M. Nekovee, “Demo Abstract: A demonstration of automatic configuration of
OpenFlow in wireless ad hoc networks,” IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). Accessed on: Mar. 29, 2020. [Online]. doi:
10.1109/INFCOMW.2019.8845307

http://hdl.handle.net/10125/60191

