
Backend Design

This application serves as a facade between the User Application and the mesh network. It handles all accessing and mutation of information among

the network and hides the complexity of these operations behind a simple REST API, on which the User Application can call.

The only exception to this description is with video streaming, in which case the User Application communicates directly with the Camera Node. All

other operations go through this Backend Application.

BackendApplication

network_manager

config

NetworkManagerConfiguration

Last edited by graysonc 1 day ago

Overview

Component Breakdown

Package Structure & Source Code Breakdown

controller

NodeController

exception

NmapClientException

NodeApiClientException

NodeServiceException

model

NodeModel

NodeType

service

NmapClient

NodeApiClient

NodeService

BackendApplication

This is the configuration class for the network_manager module. It provides all the Java beans for dependency injection. If you add a new component

(e.g., a controller or service) to this application, then you should add a @Bean method that provides an instance of that component.

NodeController defines the REST API request mappings to be used by the User Application. It receives HTTP requests and then calls on

NodeService to perform the desired operation.

This component consists of two files: NodeController.java and NodeControllerImpl.java . This seemed like a good design pattern when I made

these classes, but it's not necessary for the interface to be separate from the implementation. I regret doing it like this.

This is a generic exception that is thrown by only NmapClient . I added these exceptions so that each of the services would have its own unique

exception.

This is a generic exception that is thrown by only NodeAPIClient .

This is a generic exception that is thrown by only NodeService .

This is just the node data model. It models the properties of a network node, which are configured by modifying NodeCommon/network_settings.cfg .

The primary key is ipAddress .

This is just an Enum representing the different types of nodes. These types are MASTER , RELAY , and CAMERA .

This component encapsulates the usage of nmap . Its only purpose is to perform an nmap scan of the mesh network and parse the results to extract

the IPv4 addresses.

This component handles all interactions with the Node API (the Python REST service run on every node in the mesh network). It has a set of methods

that mirrors the methods defined in the Node API. When the Backend Application wishes to call a Node API method on a node in the mesh network, it

will call the corresponding method in NodeApiClient , which will then make the HTTP request to the node directly.

After NodeController receives a request, it calls on NodeService to carry out the desired operation by delegating the work to NmapClient and

NodeApiClient . These operations are getAllNodes , getNodeByIpAddress , and updateNode .

NetworkManagerConfiguration

NodeController

NmapClientException

NodeApiClientException

NodeServiceException

NodeModel

NodeType

NmapClient

NodeApiClient

NodeService

BackendApplication.java

This is the program entry point for the application.

